Part 1 – Radical Functions / Square Root of a Function

Answers are on the back page

- For a function defined by $y = -2\sqrt{x+3} + 5$,
- (a) State the domain and range, and explain how they relate to (b) Algebraically determine any x, y intercepts the parameters of the equation in the form $a\sqrt{x-h}+k$ Exact values

NR

Exam-style Question A radical function r(x) has a domain of $x \ge -2$, a range $y \ge -3$, and has an x-intercept x = -1. For an equation in the form $y = a\sqrt{x - h} + k$, the value of a is _____.

Exam-style Question A radical function has an equation $y = -\sqrt{bx+6}$. The domain of the function is:

- MC \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle
- **B.** $x \ge 6$ **C.** $x \ge \frac{-6}{h}$ **D.** $x \ge -6$

For each given graph of y = f(x), sketch the graph of $y = \sqrt{f(x)}$, and state its domain, range, and any invariant points.

(a)

Domain of $y = \sqrt{f(x)}$:

Equation of $y = \sqrt{f(x)}$

Domain of $y = \sqrt{f(x)}$:

Range of $y = \sqrt{f(x)}$:

Equation of $y = \sqrt{f(x)}$ In form $y = \sqrt{(x-m)(x-n)}$

[c] For both functions above (from parts a and b), determine the coordinates of any invariant points. Exact values where

5. Sketch the graph of $= \sqrt{f(x)} \Rightarrow$, and state its domain, range, and coordinates of any invariant points. Exact values where applicable.

Use the following information to answer the following three questions

The graphs of two functions, y = f(x) and y = g(x) are shown. \rightarrow

The graph of f(x) is a line, while the graph of g(x) is a parabola with its vertex on the origin.

A function h(x) is defined h(x) = g(x) + 1

A function p(x) is defined p(x) = g(x) + 4

Exam-style Question

The most likely domain for $y = \sqrt{f(x)}$ is ____ and for $y = \sqrt{g(x)}$ is ____. second digit

Use the following codes to complete the sentence above

Possible domains $\mathbf{1} \ x \in \mathbb{R}$

NR

- **3** $x \ge 3$

Exam-style Question

The most likely range for $y = \sqrt{f(x)}$ is $\underline{\qquad}_{first\ digit}$ and for $y = \sqrt{p(x)}$ is $\underline{\qquad}_{second\ digit}$.

Use the following codes to complete the sentence above

Possible ranges

NR

- **1** $y \in \mathbb{R}$
- **2** $y \ge 0$
- **3** $y \ge 1$
- **4** $y \ge 2$
- **5** $y \ge 3$
- **6** $y \ge 4$

Exam-style Question

NR

for $y = \sqrt{h(x)}$ is _

The number of invariant points on $y = \sqrt{f(x)}$ is _____, for $y = \sqrt{g(x)}$ is _____, and for $y = \sqrt{h(x)}$ is _____, second digit third digit

Part 2 - Rational Functions

- Given a function $y = \frac{2x-5}{x+1}$, determine (without the use of technology):
 - (a) The equation of any vertical asymptote
- (b) The equation of any horizontal asymptote
- (c) The value of any x or y intercepts

(a)
$$f(x) = \frac{5}{x^2 - 3x - 4}$$
 (b) $f(x) = \frac{2x^2}{x^2 - 3x}$

(b)
$$f(x) = \frac{2x^2}{x^2 - 3x}$$

(c)
$$f(x) = \frac{3}{x+1} - 3$$

A function
$$g(x) = \frac{3(x+2)(x-a)}{(x-3)}$$
, where $a \in \mathbb{N}$, has a domain of $\{x \in \mathbb{R} \mid x \neq 3\}$ and a graph with no vertical asymptotes. Determine the x -intercept and coordinates of the point of discontinuity.

- Given a function $y = \frac{x+3}{x^2-x-12}$, determine (without the use of technology):
 - (a) The equation of any vertical asymptote(s)
- (b) The equation of any horizontal asymptote
- (c) The coordinates of any point(s) of discontinuity

The rational function shown \rightarrow has a vertical asymptote at x=-1, passes through the origin, and passes through the point (1, -1). Determine a possible equation, in the form

$$y = \frac{f(x)}{g(x)}$$
 where $f(x)$ and $g(x)$ are both linear functions

The rational function shown → has one vertical asymptote, one point of discontinuity, and passes through the point (-3, 2). Determine a possible equation, in the form

$$y = \frac{a(x-b)}{x^2 + cx - d}$$

A function
$$f(x)$$
 is given by $f(x) = \frac{a(x-b)(x-3)}{2x^2-5x-3}$, where $a \neq 0, b \neq 3$ and $b \in Integers$

15. Exam-style Question The graph of y = f(x) has a vertical asymptote at:

- MC A B C D A. x = a B. $x = -\frac{1}{2}$ C. x = b
- **D.** x = 3

The graph of y = f(x) has an x-intercept at:

A. x = aB. x = 3C. $x = -\frac{1}{2}$ D. x = b

17. Exam-style Question The graph of y = f(x) has a horizontal asymptote at:

- MC (A) (B) (C) (D) A. y = a B. y = 0 C. $y = \frac{a}{2}$ D. $y = \frac{b}{2}$
- 18.

Exam-style Question A rational function given by $y = \frac{x^2 - 5x + b}{x - a}$ has a point of discontinuity at (3, 1).

The value of a is _____ and the value of b is _____.

Exam-style Question A rational function given by the graph shown has an equation of the form

NR

 $y = \frac{a(x-1)(x-b)}{x^2 - 5x + c} \quad \text{where a, b, and c are positive integers.} \quad \text{The graph has a point of discontinuity, an } x\text{-intercept, and vertical asymptote as shown.}$

The value of a is _____, b is _____, is _ first digit second digit third digit

Answers For full, worked-out solutions (as well as other practice materials) visit www.rtdmath.com)

- **1.** (a) $x \ge -3$, $y \le 5$ (b) $y = -2\sqrt{3} + 5$ x = 3.25 **2.** a = 3 **3.** C **4.** (a) $x \ge -2$, $y \ge 0$, $y = \sqrt{2x 4}$
- **4.(b)** $x \le -1$ or $x \ge 3$ $y \ge 0$ $y = \sqrt{(x+1)(x-3)}$ **4.(c)** For (a)... (2,0) & (5/2, 1) For (b)... (-1,0), (3,0), $(1-\sqrt{5}, 1)$, $(1+\sqrt{5}, 1)$
- **5.** Domain: [-4, 4] Range: [0, 4] INV Pts: $(-4, 0), (4, 0), (-\sqrt{15}, 1), (\sqrt{15}, 1)$ **6.** 31 **7.** 24 **8.** 231
- **9.** (a) x = -1 (b) y = 2 (c) x = 5/2, y = -5 **10.** (a) x = -1 and 4, y = 0 (b) x = 0 and 3, y = 2 (c) x = -1, y = -2
- **11.** (3, 15) **12.** (a) x = 4 (b) y = 0 (c) (-3, -1/7) **13.** $y = \frac{-2x}{x+1}$ **14.** $y = \frac{2(x-1)}{x^2+3x-4}$
- **15.** B **16.** D **17.** C **18.** 36 **19.** 234 This practice exam is provided by RTD Learning for use by Alberta students and teachers